Custom Search
donate car tax deduction | donate car to charity | donate car to charity california | donate car to charity los angeles | donate car without title | donate cars for kids | donate my car | donate my car to charity | donate your car | donate your car bay area | donate your car california | donate your car for kids | donate your car in maryland | donate your car nyc | donate your car tax deduction | donate your car to charity
รauto donation charities | best car donation program | best charity car donation program | best place to donate car | best place to donate car for tax deduction | california car donation | california donate car | car donation | car donation bay area | car donation ca | car donation california | car donation dc | car donation deduction | car donation in california |
แสดงบทความที่มีป้ายกำกับ เครื่องยนต์ EFI แสดงบทความทั้งหมด
แสดงบทความที่มีป้ายกำกับ เครื่องยนต์ EFI แสดงบทความทั้งหมด

โครงสร้างระบบการทำงานของเครื่องยนต์ EFI

โครงสร้างระบบการทำงานของเครื่องยนต์ EFI
          โครงสร้างระบบการทำงานของเครื่องยนต์ระบบฉีดเชื้อเพลิงแก๊สโซลีนควบคุมด้วยอิเล็กทรอนิกส์หรือเครื่องยนต์ EFI (Electronic Fuel Injection) แบ่งออกเป็น 3 ระบบ คือ
1. ระบบประจุอากาศ
2. ระบบเชื้อเพลิง
3. ระบบไฟฟ้าและอิเล็กทรอนิกส์

รูปที่ 1 โครงสร้างระบบการทำงานของเครื่องยนต์ EFI

          อนึ่งบทความนี้ผู้เขียนได้สรุปย่อมาจากแผนการสอนรายวิชางานระบบฉีดเชื้อเพลิงอิเล็กทรอนิกส์ (รหัสวิชา 2101–2116) ของผู้เขียนในปี พ.ศ. 2547 

ระบบประจุอากาศ (Air Induction System)
คลิกดูรูปภาพประกอบระบบประจุอากาศ

1. ตัวเรือนลิ้นเร่ง (Throttle Body)
          ตัวเรือนลิ้นเร่งจะมีท่อน้ำหล่อเย็นไหลผ่านเพื่อไม่ให้เกิดน้ำแข็งเกาะ (สำหรับในประเทศที่มีอากาศหนาวเย็น) โดยปกติแล้วลิ้นเร่งจะอยู่ในตำแหน่งปิดสนิทในขณะเครื่องยนต์เดินเบาสุด อุปกรณ์ที่อยู่ตรงข้ามกับกลไกเร่งของลิ้น คือตัวรับรู้ตำแหน่งลิ้นเร่ง (Throttle Position Sensor) เครื่องยนต์บางรุ่นจะติดตั้งตัวหน่วงลิ้นเร่ง (Dashpot) เพื่อลดการสูญเสียละอองเชื้อเพลิงขณะถอนคันเร่งทันทีทันใด ลดมลพิษไฮโดรคาร์บอนหรือ HC (Hydrocarbons) และคาร์บอนมอนนอกไซด์ หรือ CO (Carbon Monoxide) เครื่องยนต์รุ่นเก่าที่ตัวเรือนลิ้นเร่งบางรุ่นจะมีสกรูปรับรอบเดินเบา (Idle Speed Adjusting Screw) นอกจากนั้นแล้ว ยังมีท่ออากาศหรือท่อสุญญากาศสำหรับระบบต่างๆ เช่นท่อดูดไอเชื้อเพลิงจากกระป๋องผงถ่าน (Carbon Canister หรือ Charcoal Canister)
          เครื่องยนต์รุ่นเก่าบางรุ่นจะมีท่อของลิ้นสวิตช์สุญญากาศเพิ่มรอบเดินเบาขณะคลัตช์แม่เหล็กระบบปรับอากาศทำงาน (VSV for A/C) และท่อเพิ่มรอบเดินเบาของสวิตช์ความดันเชื้อเพลิงพวงมาลัยกำลัง

รูปที่ 2 ตัวเรือนลิ้นเร่งที่มีตัวหน่วงลิ้นเร่ง (Dashpot) และลิ้นอากาศแบบขี้ผึ้ง

2. ลิ้นอากาศ (Air Valve หรือ Air Regulator หรือ Auxiliary Air Valve หรือ Fast Idle Valve)
          เครื่องยนต์รุ่นเก่าจะใช้ลิ้นอากาศเป็นอุปกรณ์ช่วยเพิ่มรอบเดินเบาขณะอุ่นเครื่องยนต์ ซึ่งเป็นระบบที่ ECU ไม่ได้ควบคุม
          2.1 ลิ้นอากาศแบบขี้ผึ้งหรือแบบไข (Wax Type)
                ลิ้นอากาศแบบขี้ผึ้งนี้ทำงานโดยอาศัยความร้อนจากน้ำหล่อเย็นเมื่อน้ำร้อนจะทำให้ขี้ผึ้งในลิ้นทำงานด้วยอุณหภูมิ (Thermo Valve) ขยายตัวออกลิ้นกั้นช่องทาง (Gate Valve) เลื่อนปิดลดปริมาณอากาศจากด้านหน้าสู่ด้านหลังลิ้นเร่งให้น้อยลงและปิดสนิทเมื่อเครื่องยนต์มีอุณหภูมิทำงานตามปกติแล้ว (80 องศาซี)

รูปที่ 3 ลิ้นอากาศแบบขี้ผึ้ง

          2.2 ลิ้นอากาศแบบโลหะคู่ (Bi-Metal Type) 
                ลิ้นอากาศแบบโลหะคู่นี้ทำงานโดยการอาศัยความร้อนจากเครื่องยนต์ร่วมกับกระแสไฟฟ้า(ต่อขนานมาจากปั๊มเชื้อเพลิง) จะทำให้ขดลวดความร้อน (Heat Coil) ที่พันรอบแผ่นโลหะคู่ (Bi–Metal) ร้อนขึ้น แล้วบิดตัวเลื่อนลิ้นกั้นช่องทาง (Gate Valve) ให้ปิดช่องอากาศลง ซึ่งนิยมใช้มากกับเครื่องยนต์นิสสัน เรียกลิ้นอากาศแบบโลหะคู่นี้ว่า ตัวควบคุมอากาศ (Air Regulator) ช่วยให้อุ่นเครื่องยนต์จากอุณหภูมิที่ 20 องศาซี จนกระทั่งถึง 80 องศาซี จะใช้เวลาประมาณ 8 นาที
          อนึ่ง เครื่องยนต์รุ่นต่อๆ มาจะไม่ใช้ลิ้นอากาศ (Air Valve) แต่จะใช้ลิ้นควบคุมความเร็วรอบเดินเบา (ISC Valve หรือ Idle Speed Control Valve) ซึ่งเป็นระบบควบคุมด้วยอิเล็กทรอนิกส์ที่ ECU ควบคุมการอุ่นเครื่องยนต์ให้ทำงานแทนลิ้นอากาศ
          สำหรับเครื่องยนต์รุ่นล่าสุดที่ใช้ลิ้นเร่งไฟฟ้าจะไม่ใช้สกรูปรับรอบเดินเบา และไม่ใช้ลิ้นควบคุมรอบเดินเบา

รูปที่ 4 ลิ้นอากาศแบบโลหะคู่

3. ลิ้นระบายไอน้ำมันเครื่อง (PCV Valve)
          ลิ้นระบายไอน้ำมันเครื่องหรือลิ้น PCV (Positive Crankcase Ventilation) ใช้เป็นลิ้นสำหรับระบายไอน้ำมันเครื่องและไอเชื้อเพลิงส่วนหนึ่งที่รั่วผ่านแหวนลูกสูบ ซึ่งเป็นแก๊สที่ต้องระบายออก (Blow-By Gas) โดยให้หมุนวนเข้าห้องประจุไอดี เพื่อให้เผาไหม้ลดมลพิษจากการปล่อยแก๊สไฮโดรคาร์บอน (Hydrocarbons) หรือ HC โดยลิ้นระบายไอน้ำมันเครื่องนี้จะเปิดกว้างขึ้นเมื่อเครื่องยนต์มีความเร็วรอบสูงขึ้น แต่เครื่องยนต์บางแบบจะไม่ใช้ลิ้น PCV โดยจะใช้ช่องระบายเล็ก (Orifice) แทน

รูปที่ 5 ระบายไอน้ำมันเครื่องด้วยลิ้น PCV

รูปทีี่ 6 ระบายไอน้ำมันเครื่องด้วย Orifice แบบที่ 1

รูปทีี่ 7 ระบายไอน้ำมันเครื่องด้วย Orifice แบบที่ 2

4. กล่องดักไอน้ำมันแบบใช้ถ่าน หรือกระป๋องผงถ่านเก็บไอเชื้อเพลิง (Charcoal Canister หรือ Carbon Canister)
          ไอเชื้อเพลิงจากถังเชื้อเพลิงจะถูกดูดซับอยู่ภายในกล่องดักไอน้ำมันแบบใช้ถ่าน หรือกระป๋องผงถ่านเก็บไอเชื้อเพลิงแล้วจะถูกดูดเข้าห้องประจุไอดีเมื่อลิ้นปีกผีเสื้อถูกเปิด จะมีสุญญากาศดูดไอเชื้อเพลิงผสมกับอากาศเพื่อลดแก๊สมลพิษไฮโดรคาร์บอนหรือ HC โดยในเครื่องยนต์บางแบบนั้นจะใช้ลิ้นสวิตช์สุญญากาศ เรียกสั้นๆ ว่า VSV (Vacuum Switching Valve หรือ Vacuum Solenoid Valve) ควบคุมการดูดไอเชื้อเพลิง ซึ่งจะเรียกว่าลิ้นสวิตช์สุญญากาศสำหรับการระเหยเป็นไอ (VSV for Purge หรือ VSV for EVAP) ควบคุมการดูดเมื่อเครื่องยนต์อยู่ในตำแหน่งเดินเบาเป็นเวลานานและมีอุณหภูมิเหมาะสม

รูปที่ 8 ระบายไอเชื้อเพลิงแบบใช้สัญญาณสุญญากาศ

รูปที่ 9 ระบายไอเชื้อเพลิงด้วยลิ้นควบคุมสุญญากาศ

รูปที่ 10 สรุปวงจรกล่องดักไอน้ำมันแบบใช้ถ่านทั้ง 5 แบบ


ระบบเชื้อเพลิง (Fuel System)
คลิกดูรูปภาพประกอบระบบเชื้อเพลิง

          เชื้อเพลิงจะถูกสร้างให้มีความดันสูงโดยดูดเชื้อเพลิงจากถัง ปั๊มให้มีความดันผ่านท่อ กรองเชื้อเพลิง ท่อจ่ายเชื้อเพลิง (Delivery Pipe หรือ Fuel Rail) เข้าสู่หัวฉีดโดยมีตัวคุมค่าความดันเชื้อเพลิงให้เหมาะสมกับความดันอากาศในท่อร่วมไอดี
          เครื่องยนต์รุ่นเก่าบางรุ่นจะมีหัวฉีดสตาร์ตเย็น
          ระบบจ่ายเชื้อเพลิงถูกแบ่งออกเป็น 2 ชนิดดังต่อไปนี้
          1.  ระบบเชื้อเพลิงไหลกลับ (Return Fuel System) ระบบจ่ายเชื้อเพลิงมาตรฐานที่ได้ใช้กันมาตั้งแต่ดั้งเดิมนั้นเป็นระบบเชื้อเพลิงไหลกลับสู่ถัง โดยตัวคุมค่าความดัน (Pressure Regulator) ติดตั้งที่ปลายท่อจ่าย แล้วระบายเชื้อเพลิงส่วนเกินจากการควบคุมให้ไหลกลับสู่ถัง ซึ่งระบบนี้มีปัญหาคือเชื้อเพลิงจะพาความร้อนที่ท่อจ่ายกลับเข้าไปในถังเชื้อเพลิงทำให้เชื้อเพลิงในถังจะได้รับอุณหภูมิสูงขึ้นจึงกลายเป็นไอ (เชื้อเพลิงเบนซินเริ่มกลายเป็นไอที่อุณหภูมิ 25 ถึง 215 องศาซี)

รูปที่ 11 ระบบเชื้อเพลิงไหลกลับ

          2.  ระบบเชื้อเพลิงไร้การไหลกลับ (Returnless Fuel System) เพื่อที่จะให้ลดการกลายเป็นไอของเชื้อเพลิงที่ทำให้เกิดการแพร่กระจายของแก๊สไฮโดรคาร์บอน (HC) ตามมาตรฐานควบคุมมลพิษ ยูโรระดับ 3 และ 4 จึงต้องมีการออกแบบระบบเชื้อเพลิงใหม่ให้เป็นระบบเชื้อเพลิงไร้การไหลกลับ ระบบใหม่นี้จะสามารถลดอุณหภูมิของเชื้อเพลิงลงได้ประมาณ 10 องศาซี ดังนั้นการกลายเป็นไอของเชื้อเพลิงจึงถูกลดลง 33 % (ประมาณ 1 ใน 3 ของระบบจ่ายเชื้อเพลิงแบบเดิม) เพื่อให้สิ่งแวดล้อมที่ดีขึ้นและประหยัดพลังงานจากเชื้อเพลิงที่นับวันจะเหลือน้อยลงไป ตัวคุมค่าความดันเชื้อเพลิง (Fuel Pressure Regulator) ของเครื่องยนต์ที่ใช้ระบบไร้การไหลกลับ (Returnless Fuel System) ถูกติดตั้งที่ด้านเชื้อเพลิงออกจากปั๊มเชื้อเพลิงภายในถังเชื้อเพลิง (บางแบบอยู่นอกถังเชื้อเพลิง หลังกรองเชื้อเพลิง) ซึ่งระบบนี้จะควบคุมความดันไว้ที่ 3.1 - 3.5 kgf/cm2 โดยที่มิได้สัมพันธ์กับความดันหรือสุญญากาศในท่อร่วมไอดี ดังนั้นจึงเป็นหน้าที่ ของ ECU ที่จะเพิ่มระยะเวลาการฉีดเชื้อเพลิงให้สัมพันธ์กับความดันอากาศในห้องท่อร่วมไอดี ดังนั้นถ้าผู้ที่ซื้อเครื่องยนต์เก่าญี่ปุ่นในรุ่นที่ท่อจ่ายเชื้อเพลิงไม่มีตัวคุมค่าความดันเชื้อเพลิง จะต้องใช้ชุดปั๊มเชื้อเพลิงของเครื่องยนต์รุ่นนั้นด้วย ซึ่งจะมีตัวคุมค่าความดันเชื้อเพลิงติดตั้งมาด้วย

รูปที่ 12 ระบบเชื้อเพลิงไร้การไหลกลับ


1.  ปั๊มเชื้อเพลิง (Fuel Pump)
          ปั๊มเชื้อเพลิงรุ่นเก่าจะเป็นแบบติดตั้งอยู่นอกถัง ใต้ท้องรถยนต์ เรียกว่าแบบนอกถัง (In–Line) ซึ่งเป็นชนิดลูกกลิ้ง (Roller Cell) แต่รถยนต์ในปัจจุบันนี้เลิกใช้แล้วเนื่องจากการทำงานของปั๊มใช้ลูกกลิ้ง 5 ลูก หมุนด้วยแรงเหวี่ยงหนีศูนย์กลางสัมผัสกับผนังในตัวเรือนปั๊ม ทำให้เกิดการเสียดสีกันจึงมีความฝืด มีเสียงดัง กินกระแสไฟฟ้าสูง อายุการใช้งานสั้น ความดันจะไม่ค่อยสม่ำเสมอและอาจได้รับอันตรายจากการถูกกระแทกที่ตัวปั๊มหรือท่อด้านดูดดังนั้นรถยนต์ในปัจจุบันจึงใช้ปั๊มเชื้อเพลิงที่จุ่มอยู่ในถังซึ่งเรียกว่าจุ่มในถัง (In–Tank) เป็นชนิดใบพัด (Impeller หรือ Turbine) โดยที่ตัวปั๊มนั้นจะจุ่ม (Submerge) อยู่ในเชื้อเพลิงเพื่อดูดกลืน (Absorb) เสียงจากการทำงานและมีลิ้นระบายความดัน (Relief Valve) จะเปิดเมื่อความดันที่ด้านส่งสูงกว่า 4.5 – 6 กิโลกรัมต่อตารางเซนติเมตร (kgf/cm2) เพื่อป้องกันไม่ให้ความดันสูงเกินไปจนอาจจะเกิดอันตรายกับท่อหรืออุปกรณ์อื่นๆ ส่วนลิ้นกันกลับ (Check Valve) จะปิดเมื่อปั๊มเชื้อเพลิงหยุดทำงานแล้วเพื่อให้มีความดันตกค้างในระบบเตรียมสำหรับสตาร์ตในครั้งต่อไปและป้องกันการกลายเป็นไอของเชื้อเพลิงขณะมีอุณหภูมิสูง
          ปั๊มเชื้อเพลิงถูกควบคุมการทำงานด้วยรีเลย์ควบคุมปั๊ม (โตโยต้าเรียกว่ารีเลย์เปิดวงจร) ปั๊มเชื้อเพลิงของเครื่องยนต์ระบบ EFI บริษัทต่างๆ จะมีวิธีควบคุมการทำงาน 2 ลักษณะ คือปั๊มเชื้อเพลิงจะไม่ทำงานเมื่อเริ่มเปิดสวิตช์จุดระเบิดตำแหน่ง ON แต่จะทำงานเมื่อเริ่มสตาร์ตเครื่องยนต์ ส่วนอีกลักษณะหนึ่งคือปั๊มเชื้อเพลิงจะทำงานเป็นเวลา 2 หรือ 5 วินาที เมื่อเริ่มเปิดสวิตช์จุดระเบิดตำแหน่ง ON และจะทำงานอีกเมื่อเริ่มสตาร์ตเครื่องยนต์

2. กรองเชื้อเพลิง (Fuel Filter)
          กรองเชื้อเพลิงเป็นกรองละเอียด ถ้าสกปรกจะทำให้เครื่องยนต์มีกำลังตก ปั๊มเชื้อเพลิงชำรุดเร็วจึงควรเปลี่ยนตามอายุการใช้งาน (40,000 – 80,000 กม. แล้วแต่รุ่นของรถยนต์) แต่ถ้ารถยนต์มีอายุการใช้งานมากการเปลี่ยนกรองเชื้อเพลิงควรเร็วขึ้นเพราะไส้กรองเชื้อเพลิงอาจเปื่อย

3. ตัวป้องกันการกระเพื่อม (Pulsation Damper)
          เครื่องยนต์รุ่นเก่าบางรุ่นจะใช้ตัวป้องกันการกระเพื่อม (ขึ้นอยู่กับความจุกระบอกสูบ และจังหวะการฉีดเชื้อเพลิงว่าจะมีผลเปลี่ยนแปลงความดันเชื้อเพลิงไปมากน้อยเพียงใด) มีหน้าที่ลดการตกลงอย่างทันทีทันใดของความดันเชื้อเพลิงในขณะที่มีการฉีดเชื้อเพลิงโดยสปริงภายในตัวป้องกันการกระเพื่อม จะดันแผ่นไดอะแฟรม (Diaphragm) ชดเชยความดันขณะที่ตกลงในจังหวะนั้น

4. ตัวคุมค่าความดัน (Pressure Regulator)
          ตัวคุมค่าความดันหรือตัวควบคุมความดันติดตั้งที่ปลายท่อจ่าย (Delivery Pipe) มีหน้าที่รักษาความแตกต่างของความดันเชื้อเพลิงให้สูงกว่าความดันของอากาศในท่อร่วมไอดี ให้มีค่าตามที่กำหนดไว้เช่น 2.55, 2.9, 3.06, 3.35 kgf/cm2 ซึ่งแล้วแต่รุ่นของเครื่องยนต์ หมายความว่าถ้าความดันของอากาศในห้องประจุไอดีต่ำ ความดันของเชื้อเพลิงจะมีค่าต่ำลง แต่ถ้าความดันของอากาศในห้องประจุไอดีมีค่าสูงมากขึ้น ค่าความดันของเชื้อเพลิงจะสูงขึ้นตาม เพื่อให้ปริมาตรการฉีดเชื้อเพลิงคงที่โดยไม่เกี่ยวข้องกับการเปลี่ยนแปลงความดันในท่อร่วมไอดี
          อนึ่งถ้าใช้เกจวัดความดันของเชื้อเพลิงในขณะที่เครื่องยนต์กำลังทำงานอยู่จะอ่านค่าของความดันที่เกจวัดได้ต่ำกว่าค่าที่กล่าวไว้ เพราะว่าเกจวัดความดันจะเปรียบเทียบที่ความดันบรรยากาศซึ่งค่าที่ถูกต้องจะต้องรวมกับค่าความดันของอากาศในห้องประจุไอดี

5. หัวฉีด (Injectors)

          เครื่องยนต์ปัจจุบันมีการฉีดเชื้อเพลิงหลายจุด (Multi Point Injection) หรือ MPI ติดตั้งหัวฉีดที่ปลายท่อไอดี จึงมีหัวฉีดแยกประจำของแต่ละกระบอกสูบ
          ลักษณะการป้อนเชื้อเพลิงเข้าสู่หัวฉีด มีวิธีการป้อน 2 ชนิดคือ
          5.1 ชนิดป้อนที่ด้านบน (Top–Feed Type)
          5.2 ชนิดป้อนที่ด้านข้าง (Side–Feed Type)
          ปลายลิ้นหัวฉีดจะมีลักษณะแตกต่างกัน แบ่งเป็น 2 แบบ คือแบบเดือย (Pintle) และแบบรู (Hole) ซึ่งแบบรูนี้จะมีตั้งแต่ 1, 2, 3, 4 และรุ่นใหม่จะมี 12 รู เพื่อให้ฝอยละอองของเชื้อเพลิงละเอียดมากยิ่งขึ้น
          ระบบ EFI บางระบบเมื่อเปิดสวิตช์จุดระเบิดในตำแหน่ง ON กระแสไฟฟ้าไหลจากสวิตช์จุดระเบิดผ่านฟิวส์ไปยังขดลวดสนามแม่เหล็ก (Solenoid Coil) ของหัวฉีดบางระบบไม่ผ่านสวิตช์จุดระเบิดแต่ผ่านรีเลย์ (ของนิสสันไม่ต้องผ่านสวิตช์จุดระเบิดและรีเลย์) โดยในจังหวะที่มีการฉีดนั้น ECU จะควบคุมให้ทรานซิสเตอร์ (NPN Transistor) (บางรุ่นจะใช้ IC) ต่อกระแสไฟฟ้าที่รออยู่แล้วนั้นให้ไหลครบวงจรลงดิน (Ground) จึงเกิดการเหนี่ยวนำ สนามแม่เหล็กเอาชนะแรงกดของสปริงรวมทั้งความดันของเชื้อเพลิงที่กดด้านบนของลิ้นหัวฉีดและน้ำหนักของลิ้นหัวฉีด ดังนั้นหัวฉีดจึงมีความล่าช้าในการยกลิ้นหัวฉีดให้ฉีดเชื้อเพลิง โดยทั่วไปแล้วความล่าช้าในการเปิดลิ้นหัวฉีดจะต้องไม่เกินกว่า 1 มิลลิวินาที (ms) (0.001 วินาที) ซึ่งการที่ลิ้นหัวฉีดจะเปิดเร็วหรือช้าขึ้นอยู่กับการออกแบบหัวฉีดและวงจรการควบคุมการฉีดของหัวฉีด โดยที่ระยะการยกตัว (Lift) ของเข็มหัวฉีดแบบเดือยประมาณ 50 – 100 ไมโครเมตร (µm) (0.05 – 0.1 มิลลิเมตรหรือ mm)


ระบบไฟฟ้าและอิเล็กทรอนิกส์

          ระบบไฟฟ้าและอิเล็กทรอนิกส์นับว่าเป็นเทคโนโลยีที่มีความสำคัญมากในการทำงานร่วมกันกับกลไกต่างๆ ของเครื่องยนต์ EFI ซึ่งเป็นระบบที่มีกระบวนการทำงานทางคอมพิวเตอร์คือต้องมีสัญญาณข้อมูลจากตัวรับรู้ (Sensor) หรือสวิตช์ส่งสัญญาณเข้าไปประมวลผลยังหน่วยควบคุมทางอิเล็กทรอนิกส์ (ECU) แล้วส่งสัญญาณออกไปยังอุปกรณ์ทำงานหรือตัวกระตุ้น (Actuator) ดังตัวอย่างที่แสดงในรูปที่ 13

รูปที่ 13 ระบบการทำงานของเครื่องยนต์ EFI (ตัวอย่างเครื่องยนต์ Honda B16A VTEC)

1.  ตัวรับรู้ (Sensor)
          สัญญาณจากตัวรับรู้ ตัวอย่างดังเช่นที่แสดงในรูปที่ 13 ซึ่งเป็นเครื่องยนต์ระบบ EFI ของฮอนด้า PGM-FI (Programmed-Fuel Injection) คือเครื่องยนต์ Honda B16A VTEC มีตัวรับรู้หรือสัญญาณทางระบบไฟฟ้าเข้า ECU ดังต่อไปนี้
          1.1   ตัวรับรู้มุมเพลาข้อเหวี่ยง (Crank Sensor) ซึ่ง ECU นำไปคำนวณหาความเร็วรอบเครื่องยนต์ด้วย ติดตั้งอยู่ในจานจ่าย
          1.2   ตัวรับรู้ตำแหน่งศูนย์ตายบนหรือ TDC (TDC Sensor) ติดตั้งอยู่ในจานจ่าย
          1.3   ตัวรับรู้สูบที่ 1 (CYL Sensor) ติดตั้งอยู่ในจานจ่าย
          1.4   ตัวรับรู้ความดันสมบูรณ์ในท่อร่วม (MAP Sensor) ติดตั้งอยู่ที่ตัวถังรถยนต์ใกล้ท่อร่วมไอดีโดยมีท่อสุญญากาศต่อมาที่ห้องประจุไอดี (รุ่นต่อมาติดตั้งอยู่บนห้องประจุไอดีใกล้กับลิ้นเร่งโดยไม่ต้องใชท่อสุญญากาศ)
          1.5   ตัวรับรู้อุณหภูมิน้ำ (หล่อเย็น) (TW Sensor) ติดตั้งอยู่ท้ายเครื่องยนต์ด้านล่างจานจ่าย
          1.6   ตัวรับรู้มุมลิ้นเร่ง (TH Sensor) ติดตั้งอยู่ตรงข้ามกลไกเปิดลิ้นเร่ง
          1.7   ตัวรับรู้อุณหภูมิอากาศ (TA Sensor) ติดตั้งอยู่ที่ท่อร่วมไอดีสูบที่ 1
          1.8   ตัวรับรู้ออกซิเจน (Oxygen Sensor) ติดตั้งอยู่ที่ท่อร่วมไอเสียก่อนเข้าเครื่องฟอกไอเสียเชิงเร่งปฏิกิริยา
          1.9   ตัวรับรู้การน็อก (Knock Sensor) ติดตั้งอยู่ที่ตรงกลางเสื้อสูบใต้ท่อร่วมไอดี
          1.10 สวิตช์ความดันเชื้อเพลิงเครื่องของระบบ VTEC ติดตั้งอยู่ใต้ลิ้นโซเลนอยด์ควบคุม VTEC
          1.11 สวิตช์ความดันเชื้อเพลิงพวงมาลัยกำลัง ติดตั้งอยู่ที่ท่อเชื้อเพลิงพวงมาลัยกำลังด้านความดันสูง
          1.12 ตัวรับรู้ความเร็วรถยนต์ (Vehicle Speed Sensor หรือ VSS) ติดตั้งอยู่ชุดเกียร์ด้านเพลาส่งกำลัง
          1.13 สัญญาณส่งออกการจุดระเบิด (Ignition Output Signal) ติดตั้งอยู่ในจานจ่าย
          1.14 อุปกรณ์รับรู้ภาระทางไฟฟ้า ((ELD) ติดตั้งอยู่ที่ชุดกล่องฟิวส์ข้างแบตเตอรี่


2.  หน่วยควบคุมทางอิเล็กทรอนิกส์ (ECU)
          หน่วยควบคุมทางอิเล็กทรอนิกส์ (Electronic Control Unit) หรือ ECU เป็นระบบไมโครคอมพิวเตอร์ ใน ECU มีหน่วยประมวลผลกลางหรือ CPU ควบคุมการทำงานของเครื่องยนต์โดยสั่งการไปยังตัวกระตุ้น ดังแสดงในรูปที่ 13
          การทำงานของระบบควบคุมด้วยคอมพิวเตอร์ (Computer-Controlled System) จะถูกแบ่งออกเป็น 3 ส่วนคือภาคสัญญาณเข้า ขบวนการ (หน่วยควบคุม) และภาคสัญญาณออก
          2.1  ภาคสัญญาณเข้า (Input Periphery)
          สัญญาณเข้าถูกส่งมาจากตัวรับรู้ (Sensors) อาจติดตั้งอยู่ตามจุดต่าง ๆ ของเครื่องยนต์ มีอยู่หลายจุดและรวมทั้งสัญญาณจากการทำงานของอุปกรณ์ทางไฟฟ้าต่าง ๆ ของรถยนต์ โดยตัวรับรู้อาจส่งสัญญาณเป็นแรงเคลื่อนที่เปลี่ยนแปลงอย่างช้า ๆ หรือรวดเร็วในรูปแบบที่เป็นคลื่นสัญญาณต่าง ๆ เรียกว่า พัลส์ (Pulses) เช่นคลื่นรูปสี่เหลี่ยม (Square Wave) คลื่นรูปไซน์ (Sine Wave) คลื่นรูปฟันเลื่อย (Sawtooth Wave) ตัวรับรู้บางแบบส่งแรงเคลื่อนไปที่ ECU แต่บางแบบอาจต่อไฟฟ้าให้ลงดิน (Ground)
          2.2  กระบวนการ (Process) หรือหน่วยควบคุม (Control Unit)
                2.2.1  หน่วยรับส่งข้อมูลส่วนหน้า (I/O Interface) หน่วยควบคุมนี้จะเป็นส่วนรับข้อมูลเข้า (Input Stages) เพื่อแปรเปลี่ยนสัญญาณต่าง ๆ ให้เป็นสัญญาณทางคอมพิวเตอร์ คือเป็นสัญญาณข้อมูลทางตัวเลข (Digital) หมายถึง 1 = มีสัญญาณ (แรงเคลื่อนเป็น 5 V) และ 0 = ไม่มีสัญญาณ (แรงเคลื่อนเป็น 0 V) ดังนั้นหน่วยรับส่งข้อมูลส่วนหน้า (I/O Interface) จึงมีหน้าที่แปรข้อมูลให้ระบบคอมพิวเตอร์อ่านสัญญาณได้ โดยที่ระบบคอมพิวเตอร์ส่งสัญญาณออกจะต้องเปลี่ยนแปลงไปเป็นสัญญาณการควบคุมระบบต่าง ๆ ที่ส่วนส่งข้อมูลออก (Output Stages)
                2.2.2 หน่วยนำส่งข้อมูล (Buses) ข้อมูลจากหน่วยรับส่งข้อมูลส่วนหน้าทั้งหมดจะถูกนำส่งไปยังหน่วยความจำและหน่วยประมวลผลกลาง แล้วนำส่งคำสั่งกลับมายังหน่วยรับส่งข้อมูลส่วนหน้าอีก ซึ่งหน่วยนำส่งข้อมูลนี้มี 3 รูปแบบคือ
                         1)  นำส่งข้อมูล (Data Bus)
                         2)  นำส่งแหล่งข้อมูล (Address Bus)
                         3)  นำส่งการควบคุม (Control Bus)
                2.2.3 หน่วยความจำ (Memories)
                         1)  แรมหรือ RAM (Random Access Memory) ความจำ RAM ทำการอ่านข้อมูลที่ได้รับรายงานสภาวะการทำงานของเครื่องยนต์ที่ส่งมาจากตัวรับรู้และสัญญาณทั้งหมด แล้วจึงบันทึกค่าไว้ จากนั้นหน่วยความจำ RAM จึงส่งผลข้อมูลไปยัง CPU ซึ่งข้อมูลของความจำ RAM จะถูกลบหายไปเมื่อดับเครื่องยนต์ (ปิดสวิตช์จุดระเบิดตำแหน่ง OFF) แต่มีข้อมูลส่วนหนึ่งที่ CPU วิเคราะห์ว่าสัญญาณจากตัวรับรู้ตัวใดตัวหนึ่ง (หรือหลายตัว) เกิดมีค่าผิดปกติจากที่ได้กำหนดไว้ ความจำ RAM นี้จะบันทึกว่าตัวรับรู้นั้นว่าเกิดการบกพร่อง โดยใช้แรงเคลื่อนไฟฟ้าจากแบตเตอรี่ที่ต่อผ่านฟิวส์เข้ามาโดยตรงตลอดเวลาสำหรับเลี้ยงหน่วยความจำ RAM ที่บันทึกว่าตัวรับรู้ใดบกพร่องบ้าง
                         2)  รอมหรือ ROM (Read Only Memory) ความจำ ROM นี้จะถูกบันทึกข้อมูลจากโรงงานผู้ผลิต ซึ่งได้ออกแบบและกำหนดเป็นค่ามาตรฐานต่าง ๆ ความจำ ROM จะเป็นหน่วยความจำถาวรไม่อาจลบได้ แม้แรงเคลื่อนในระบบจะถูกตัดหายไป เครื่องยนต์แต่ละรุ่นมีโปรแกรม (Program) ที่แตกต่างกันเมื่อนำ ROM มาใส่ใน ECU แล้วจะทำการทำลาย (Burned) ขา ROM ออก เราจึงมิอาจแก้ไขหรือเปลี่ยนแปลงใด ๆ ได้เลยนอกจากการเปลี่ยน ROM ตัวใหม่ที่ไม่มีข้อมูลแล้วป้อนข้อมูล (Program) ใหม่ใส่เข้าไปหรือเปลี่ยนเอา ROM สำเร็จรูป (มีข้อมูลบรรจุแล้ว) ใส่ลงไปโดยใช้ขาเสียบ (Socket) ซึ่งวิธีการเปลี่ยน IC–ROM นี้เป็นการดัดแปลงแก้ไข (Modify) ให้ ECU กำหนดการควบคุมการทำงานใหม่ เช่นให้ฉีดเชื้อเพลิงมากขึ้นและมีการตัดการฉีดเชื้อเพลิงที่ความเร็วรอบเครื่องยนต์สูงขึ้นหรือไม่ตัดการฉีดที่ความเร็วรถยนต์เกิน 180 ก.ม./ช.ม. (ECU เก่าญี่ปุ่นจะตัดการฉีดเชื้อเพลิงที่ความเร็วรถยนต์เกิน 180 ก.ม./ช.ม. เพราะกฎหมายประเทศญี่ปุ่นกำหนดไว้)
                2.2.4 หน่วยประมวลผลกลาง (Central Processing Unit) (CPU) หรือไมโครโปรเซสเซอร์ (Microprocessor)
                         หน่วยประมวลผลกลางแบ่งการทำงานออกเป็น 3 ส่วนหรือหน่วยคือ
                         1)  ส่วนควบคุม (Control Section) มีหน้าที่ควบคุมการกำเนิดและอ่านสัญญาณ
                         2)  หน่วยตรรกวิทยาและเลขคณิต (Arithmetic and Logical Unit) หรือ ALU มีหน้าที่ประมวลเหตุผลและคำนวณจากข้อมูลทั้งหมด
                         3)  หน่วยรับรองผล (Registers) มีหน้าที่รับรองผลชั่วคราวและข้อมูลการสั่งการ
          2.3 ภาคสัญญาณออก (Output Periphery) ภาคสัญญาณออกคือส่วนที่ทำหน้าที่ทำงาน โดยเรียกอุปกรณ์นี้ว่าตัวกระตุ้น (Actuator) หมายถึงอุปกรณ์ทางอิเล็กทรอนิกส์หรือไฟฟ้า ที่ถูกควบคุมการทำงานมาจาก ECU เช่นหัวฉีด (Injector) ตัวช่วยจุดระเบิด (Igniter) (บางระบบเป็นทรานซิสเตอร์กำลัง) ลิ้นควบคุมความเร็วรอบเดินเบา (ISC Valve) ลิ้นสวิตช์สุญญากาศ (VSV) รีเลย์ควบคุมปั๊มเชื้อเพลิง (Fuel Pump Control Relay) (ของระบบที่ใช้ ECU ควบคุม) ลิ้นโซเลนอยด์ (Solenoid Valve) รีเลย์ควบคุมพัดลมไฟฟ้ารวมทั้งรีเลย์ควบคุมคลัตช์แม่เหล็กเป็นต้น

3.  ตัวกระตุ้น (Actuator)
          ตัวกระตุ้นเป็นอุปกรณ์ทำงานที่ถูกสั่งการควบคุมมาจาก ECU เพื่อให้ระบบต่างๆ ของเครื่องยนต์ทำงานได้ตามที่ออกแบบไว้ โดยตัวอย่างที่แสดงในรูปที่ 13 เป็นเครื่องยนต์ Honda B16A VTEC มีตัวกระตุ้นดังต่อไปนี้
          3.1  หัวฉีด (Injector) มี 4 หัว ติดตั้งอยู่ที่ท่อ (ราง) จ่ายเชื้อเพลิง
          3.2  หน่วยควบคุมการจุดระเบิด (Ignition Control Module หรือ ICM) ติดตั้งอยู่ในจานจ่าย
          3.3  ลิ้นควบคุมรอบเดินเบาด้วยอิเล็กทรอนิกส์ (Electronic Air Control Valve หรือ EACV) ติดตั้งอยู่ที่ห้องประจุไอดีใกล้กับลิ้นเร่ง
          3.4  ลิ้นโซเลนอยด์ควบคุม VTEC (Spool Solenoid Valve) ติดตั้งอยู่ท้ายเครื่องยนต์ใกล้กับจานจ่าย
          3.5  ตัวอุ่นตัวรับรู้ออกซิเจน ติดตั้งอยู่ที่ท่อร่วมไอเสียก่อนเข้าเครื่องฟอกไอเสียเชิงเร่งปฏิกิริยา
          3.6  รีเลย์ควบคุมปั๊มเชื้อเพลิง (ถ้าเปรียบเทียบกับโตโยต้าคือรีเลย์เปิดวงจร) ติดตั้งอยู่หน่วยเดียวกันกับรีเลย์ควบคุมเครื่องยนต์ (ถ้าเปรียบเทียบกับโตโยต้าคือรีเลย์หลัก EFI)
          3.7  มาตรวัดความเร็วรอบเครื่องยนต์
          3.8  หลอดไฟตรวจสอบเครื่องยนต์

ระบบจุดระเบิด

ระบบจุดระเบิดสำหรับเครื่องยนต์ EFI 
          ระบบจุดระเบิดสำหรับเครื่องยนต์ EFI รุ่นเก่าเป็นระบบจุดระเบิดแบบใช้จานจ่าย ต่อมาได้พัฒนาเป็นระบบจุดระเบิดแบบไร้จานจ่ายซึ่งมีอยู่ 2 ชนิดคือคอยล์จุดระเบิดร่วมกัน 2 สูบ และคอยล์จุดระเบิดประจำสูบ
         อนึ่งบทความนี้ผู้เขียนได้สรุปย่อมาจากแผนการสอนรายวิชางานระบบฉีดเชื้อเพลิงอิเล็กทรอนิกส์ (รหัสวิชา 2101–2116) ของผู้เขียนในปี พ.ศ. 2547 1. ระบบจุดระเบิดแบบใช้จานจ่าย
          ระบบจุดระเบิดแบบนี้ใช้กันมายาวนานตั้งแต่ดั้งเดิมและปัจจุบันยังคงมีใช้อยู่กับเครื่องยนต์ที่มีเทคโนโลยีไม่สูงนักโดยใช้จานจ่าย (Distributor) แบบเก่าจะใช้คอยล์จุดระเบิด (Ignition Coil) รูปทรงกระบอกซึ่งเป็นแบบสนามแม่เหล็กเปิดดังที่แสดงในรูปที่ 1 ต่อมาพัฒนาใช้คอยล์จุดระเบิดแบบสนามแม่เหล็กปิดมีรูปร่างทรงเหลี่ยมดังที่แสดงในรูปที่ 2 และ 3 ซึ่งมีประสิทธิภาพการเหนี่ยวนำสูงกว่าแบบสนามแม่เหล็กเปิด คอยล์จุดระเบิดแบบสนามแม่เหล็กปิดนี้ของฮอนด้ามักติดตั้งอยู่ภายในจานจ่าย ส่วนของโตโยต้าในรุ่นที่ใช้คอยล์จุดระเบิดและตัวช่วยจุดระเบิดอยู่ในจานจ่าย เรียกว่าชุดจุดระเบิดรวม (IIA) (Integrated Ignition Assembly) ดังที่แสดงในรูปที่ 3 อย่างไรก็ตามตัวช่วยจุดระเบิดของรุ่นที่อยู่ภายในจานจ่ายมีข้อจำกัดในด้านของความร้อนที่ตัวช่วยจุดระเบิดได้รับ

รูปที่ 1 คอยล์จุดระเบิดแบบสนามแม่เหล็กเปิดและตัวช่วยจุดระเบิดของ TCCS 

รูปที่ 2 คอยล์จุดระเบิดแบบสนามแม่เหล็กปิดของ ECCS 

รูปที่ 3 ชุดจุดระเบิดรวม (IIA หรือ Integrated Ignition Assembly) ของ TCCS 

รูปที่ 4 วงจรจุดระเบิด ECCS ของนิสสัน 

          หลักการทำงานของระบบจุดระเบิดแบบใช้จานจ่าย จากรูปที่ 4 เป็นตัวอย่างสำหรับระบบ ECCS ของนิสสัน จะเห็นได้ว่าสัญญาณจากตัวรับรู้ต่างๆ ส่งเข้า ECU หลายสัญญาณมีทั้งสัญญาณหลักคือสัญญาณจากตัวรับรู้มุมเพลาข้อเหวี่ยง (Crank Angle Sensor) กับมาตรอากาศไหล (Air Flow Meter) และสัญญาณรอง เช่นตัวรับรู้อุณหภูมิน้ำ (Water Temperature Sensor) และสวิตช์ลิ้นเร่ง (Throttle Valve Switch) เป็นตัน ซึ่ง ECU ควบคุมจังหวะจุดระเบิดโดยก่อนที่จะถึงจังหวะจุดระเบิด ECU (หรือในบางครั้งนิสสัน จะเรียกว่า ECCS Control Unit) จะส่งสัญญาณแรงเคลื่อนกระตุ้นขา B (Base) ที่ทรานซิสเตอร์กำลัง (Power Transistor) จึงทำให้ทรานซิสเตอร์กำลังทำงานหรือนำไฟฟ้า ดังนั้นกระแสไฟฟ้าจากขั้ว IG ของสวิตช์จุดระเบิดจะไหลผ่านเข้ามายังขั้ว + (บวก) คอยล์จุดระเบิด (Ignition Coil) ผ่านขดลวดไฟแรงต่ำ (ขดลวดปฐมภูมิ) (Primary Winding) ออกที่ขั้ว – (ลบ) คอยล์จุดระเบิด ไปที่ขา C (Collector) ออกขา E (Emitter) ของทรานซิสเตอร์กำลังแล้วลงดิน (Ground) ครบวงจร ทำให้เกิดการเหนี่ยวนำมีสนามแม่เหล็กที่แกนเหล็กอ่อน (Laminated Iron Core) ของคอยล์จุดระเบิด เนื่องจากขดลวดปฐมภูมิหรือขดลวดไฟแรงต่ำมีค่าความต้านทานต่ำ (ประมาณ 1 Ω) กระแสไฟฟ้าที่ไหลผ่านจะสูงมาก ระยะเวลาของแรงเคลื่อนต้านกลับ (Back EMF หรือ Back Electromotive Force) จะสั้นทำให้สนามแม่เหล็กถึงจุดอิ่มตัวได้เร็ว ECU จะกำหนดมุมองศาการจุดระเบิด จากการประมวลผล ปรับแก้ไขมุมการจุดระเบิด มุมดเวลล์ (Dwell Angle) และการชดเชยแรงเคลื่อนแบตเตอรี่ เมื่อถึงจังหวะจุดระเบิด ECU หยุดส่งสัญญาณแรงเคลื่อนไปยังขา B (Base) ทำให้ทรานซิสเตอร์กำลังหยุดนำไฟฟ้าทันทีกระแสไฟฟ้าของขดลวดไฟแรงต่ำจึงหยุดไหลอย่างทันทีทันใด ทำให้สนามแม่เหล็กที่คอยล์จุดระเบิดยุบตัวอย่างรวดเร็วตัดกับขดลวดทุติยภูมิ (Secondary Winding) หรือขดลวดไฟแรงสูง เกิดเหนี่ยวนำแรงเคลื่อนไฟฟ้าสูงประมาณ 20,000 – 35,000 V ไหลออกไปยังสายคอยล์ผ่านหัวโรเตอร์ในจานจ่าย (Distributor) ไปยังสายหัวเทียน (Spark Plug Lead) ของกระบอกสูบที่หัวโรเตอร์หมุนมาตรงกัน แล้วส่งต่อไปยังขั้วหัวเทียน (Plug Connector) เข้าหัวเทียน (Spark Plug) เกิดประกายไฟ
          ระบบจุดระเบิดด้วยอิเล็กทรอนิกส์ไม่จำเป็นจะต้องมีคอนเดนเซอร์ (Condenser) หรือคาปาซิเตอร์ (Capacitor) ที่ขั้ว - คอยล์จุดระเบิด แต่จะใช้คอนเดนเซอร์ 250 V 0.47 µF (ไมโครฟารัด) โดยต่อขนานเข้ากับสายไฟฟ้าที่เข้าขั้ว + คอยล์จุดระเบิด เพื่อลดคลื่นสัญญาณรบกวนวิทยุ เรียกอุปกรณ์นี้ว่าตัวกรองคลื่นรบกวนวิทยุ (Noise Filter)
          อนึ่งที่ขั้ว - คอยล์จุดระเบิดของนิสสัน มักจะมีตัวต้านทาน (ค่าความต้านทาน 2.2 kΩ) จะต่อไปยังมาตรวัดความเร็วรอบเครื่องยนต์ที่หน้าปัดสำหรับการวัดความเร็วรอบ (แบบเก่า) ซึ่งตัวต้านทานนี้มีหน้าที่ลดแรงเคลื่อนที่เกิดขึ้นจากการเหนี่ยวนำในตัวเอง (Self Induction) ของขดลวดปฐมภูมิ (ที่ขั้ว – คอยล์จุดระเบิด) (ประมาณ 200 – 500 V) ซึ่งเกิดขึ้นพร้อมๆ กับการเหนี่ยวนำแรงเคลื่อนสูงที่ขดลวดทุติยภูมิ
          หมายเหตุ ในสภาวะปกติที่ความเร็วรอบเดินเบาในระบบ ECCS ส่วนใหญ่มีจังหวะการจุดระเบิดที่ 15 องศาก่อนศูนย์ตายบนหรือ BTDC (Before Top Dead Center)

รูปที่ 5 ทรานซิสเตอร์กำลัง (Power Transistor) ในระบบจุดระเบิดของ ECCS 


รูปที่ 6 แสดงระบบจุดระเบิดโมโทรนิค (Motronic) ของบอสช์ (BOSCH) 


รูปที่ 7 หน่วยควบคุมระบบโมโทรนิคของบอสช์ ที่ใช้ทรานซิสเตอร์กำลัง อยู่ภายในกล่อง ECU 


รูปที่ 8 วงจรควบคุมการจุดระเบิดของ TCCS ใช้ตัวช่วยจุดระเบิด (Igniter)
โดยรับสัญญาณการจุดระเบิด (IGT) จาก ECU แล้วส่งสัญญาณยืนยันการจุดระเบิด (IGF) ไปยัง ECU 

          เครื่องยนต์บางแบบจะไม่ใช้ทรานซิสเตอร์กำลัง แต่จะใช้อุปกรณ์ช่วยการจุดระเบิดหรือตัวช่วยจุดระเบิด (Igniter) จากในรูปที่ 8 จะเห็นได้ว่าวงจรควบคุมการจุดระเบิดของโตโยต้า ใช้ตัวช่วยจุดระเบิด (Igniter) ฮอนด้าเรียกว่า ICM (Igniter Control Module) หรือหน่วยควบคุมการจุดระเบิด ส่วนของซูบารุ และมาสด้าเรียกว่าตัวช่วยจุดระเบิด (Igniter) แต่วงจรภายในจะแตกต่างจากของโตโยต้า โดยที่นิสสัน และมิตซูบิชิเรียกว่าทรานซิสเตอร์กำลัง (Power Transistor) ในที่นี้จะกล่าวถึงหน้าที่วงจรของตัวช่วยจุดระเบิด (Igniter) ของ TCCS วงจรควบคุมมุมดเวลล์ (Dwell Angle Control Circuit) วงจรนี้ทำหน้าที่ควบคุมระยะเวลาของทรานซิสเตอร์กำลัง (ในรูปที่ 8 คือ Tr2) นำไฟฟ้าเพื่อให้กระแสไฟฟ้าที่ไหลผ่านขดลวดปฐมภูมิอิ่มตัวสัมพันธ์กับการเปลี่ยนแปลงความเร็วรอบของเครื่องยนต์ ควบคุมโดยเมื่อตัวช่วยจุดระเบิดเริ่มได้รับสัญญาณจังหวะการจุดระเบิด (IGT หรือ Ignition Timing) ที่ความเร็วรอบเครื่องยนต์ต่ำ วงจรควบคุมมุมดเวลล์จะหน่วงเวลาให้ Tr2 ช้าลง ถ้าความเร็วรอบเครื่องยนต์สูงจะควบคุมให้ Tr2 ทำงานเร็วขึ้น (ECU เผื่อเวลา ON ของ IGT ไว้ให้วงจรควบคุมมุมดเวลล์ในตัวช่วยจุดระเบิดทำงานไว้แล้ว) วงจรป้องกันการทำงานค้าง (Lock–Up Prevention Circuit) มีหน้าที่คอยป้องกันไม่ให้ Tr2 ทำงานค้างไม่ให้เกิดความเสียหายกับขดลวดปฐมภูมิและทรานซิสเตอร์กำลัง วงจรควบคุมมุมการจุดระเบิด (Ignition Control Circuit) มีหน้าที่ขยายสัญญาณที่ได้รับจากวงจรต่าง ๆ เพื่อขับทรานซิสเตอร์กำลัง Tr2 ให้นำไฟฟ้า (ON) และหยุดนำไฟฟ้า (OFF) วงจรป้องกันแรงเคลื่อนไฟฟ้าเกิน (Over–Voltage Prevention Circuit) มีหน้าที่ป้องกันความเสียหายกับคอยล์จุดระเบิดและทรานซิสเตอร์กำลังจากการที่ได้รับแรงเคลื่อนที่สูงเกิน วงจรกำเนิดสัญญาณ IGF (IGF Signal Generation Circuit) สัญญาณยืนยันการจุดระเบิดหรือ IGF (Ignition Failure หรือ Confirmation) เกิดขึ้นโดยทรานซิสเตอร์ (Tr3) ของวงจรยืนยันการจุดระเบิดหยุดนำไฟฟ้าที่ไหลมาจาก ECU จึงเกิดเป็นสัญญาณยืนยันการจุดระเบิด โดยสัญญาณนี้จะส่งกลับไปยัง ECU อย่างต่อเนื่องตลอดเวลาที่มีการเหนี่ยวนำของคอยล์จุดระเบิด (ของ TCCS ในรุ่นเดิมจะตามหลังการสิ้นสุดของสัญญาณ IGT ตามที่แสดงในรูป 9)
          เครื่องยนต์ที่ใช้ตัวแปรสภาพไอเสียหรือเครื่องฟอกไอเสียเชิงเร่งปฏิกิริยา กล่อง ECU จะต้องมีหน้าที่ป้องกันการทำงานบกพร่อง (Fail – Safe Function) สำหรับการจุดระเบิด ถ้าหากไม่ได้รับสัญญาณ IGF ติด ๆ กัน 2 ครั้ง ECU จะสั่งตัดการฉีดเชื้อเพลิง ทั้งนี้เพื่อป้องกันมิให้เกิดความเสียหายต่อตัวแปรสภาพไอเสียอันเกิดจากการจุดระเบิดบกพร่องตามที่แสดงในรูป 9

รูปที่ 9 วิธีการวิเคราะห์ปัญหาที่เกิดขึ้นกับสัญญาณยืนยันการจุดระเบิด (IGF) ของ TCCS 

          อนึ่ง ระบบจุดระเบิดแบบใช้จานจ่ายนี้ในเครื่องยนต์ 1 เครื่อง อาจจะใช้คอยล์จุดระเบิด 2 ลูก โดยใช้จานจ่ายชุดเดียวกัน แต่หัวโรเตอร์มี 2 ชั้น คือแต่ละกระบอกสูบจะมีหัวเทียน 2 หัว (เรียกว่า Twin Plug หรือ Twin Spark) แต่บางแบบ เช่นโตโยต้า 1G–GTE นั้นจะใช้คอยล์จุดระเบิดลูกเดียวโดยที่ขดลวดปฐมภูมิมี 2 ขด (ขดลวดทุติยภูมิมี 1 ขด) (ขดลวดปฐมภูมิขดหนึ่งใช้กับสูบที่ 1, 2 และ 3 อีกขดหนึ่งใช้กับสูบที่ 4, 5 และ 6) เพื่อเพิ่มกระแสไฟฟ้าโดยที่ขดลวดปฐมภูมิจะไม่มีความร้อนสะสมมากเกินไป

2. ระบบจุดระเบิดแบบไร้จานจ่าย 
          ระบบจุดระเบิดแบบนี้จะไม่ใช้จานจ่าย ซึ่งมีอยู่ 2 ชนิดด้วยกัน
          2.1 คอยล์จุดระเบิดร่วมกัน 2 สูบ (Dual–Spark Ignition Coil) 

รูปที่ 10 ระบบจุดระเบิดชนิดคอยล์จุดระเบิดร่วมกัน 2 สูบของเครื่องยนต์ 6 สูบ TCCS 

          ระบบจุดระเบิดแบบนี้นิยมใช้กันมากกับเครื่องยนต์มิตซูบิชิและฮุนไดแบบเพลาลูกเบี้ยวคู่เหนือฝาสูบ (Double Over Head Camshaft หรือ DOHC) ส่วนของโตโยต้านั้นจะเรียกระบบนี้ว่า การจุดระเบิดไร้จานจ่าย (Distributorless Ignition) หรือ DLI แต่ของจีเอ็ม (GM) เรียกว่าการจุดระเบิดโดยตรง (Direct Fire Ignition) หรือ DFI
          ระบบจุดระเบิดชนิดคอยล์จุดระเบิดร่วมกัน 2 สูบนั้น ปลายทั้งสองของขดลวดทุติยภูมิ (ดังที่แสดงในรูปที่ 10) จะต่อไปยังหัวเทียน 2 สูบ ที่มีมุมเพลาข้อเหวี่ยงขึ้นหรือลงพร้อมกัน ดังนั้นไฟแรงสูงจึงไหลแบบอนุกรมผ่านไปยังหัวเทียนทั้ง 2 สูบ โดยที่สูบใดสูบหนึ่งอยู่ในจังหวะเริ่มจุดระเบิด (หรือปลายสุดของจังหวะอัด) และอีกสูบหนึ่งอยู่ในช่วงท้ายของจังหวะคาย ดังนั้นประกายไฟแรงสูงที่หัวเทียนของทั้ง 2 สูบนั้นจึงถือได้ว่าเกิดขึ้นพร้อมๆ กัน
          หมายเหตุ กระแสไฟฟ้าไหลด้วยความเร็ว 186,000 ไมล์ต่อวินาที (mile/s) หรือ 297,600 (ประมาณ 3 แสน) กิโลเมตรต่อวินาที (km/s)
          ข้อจำกัดของระบบจุดระเบิดชนิดคอยล์จุดระเบิดร่วมกัน 2 สูบ คือ
          1) ถ้าระบบไฟฟ้าแรงสูงของสูบใดสูบหนึ่งมีปัญหาจากสายหัวเทียนขาดภายในหรือเขี้ยวหัวเทียนห่างมาก จะทำให้ประกายไฟที่หัวเทียนอีกสูบหนึ่งอ่อนด้วยเช่นกัน
          2) จังหวะการทำงาน 1 กลวัตร (เพลาข้อเหวี่ยงหมุน 2 รอบ) แต่ละสูบจะมีประกายไฟเกิดขึ้น 2 ครั้ง ครั้งหนึ่งจุดระเบิด ส่วนอีกครั้งไม่จุดระเบิด (คือสูบที่มีประกายไฟช่วงปลายจังหวะคาย)
          วิธีการป้องกันปัญหาจากข้อจำกัดทั้ง 2 ที่กล่าวมาแล้วคือ
          1) ใช้หัวเทียนทองคำขาว (Platinum) ซึ่งมีอายุการใช้งาน 60,000 - 100,000 km ยาวนานกว่าหัวเทียนธรรมดา (แกนทองแดง) ถึง 3 - 5 เท่า
          2) ถ้าตั้งไฟจุดระเบิดผิด โดยตั้งไฟอ่อนกว่ามาตรฐานมากเกินไป อาจจะเป็นเหตุให้เกิดไฟจุดระเบิดในท่อร่วมไอดี เพราะประกายไฟของอีกสูบหนึ่งจะไปเกิดระหว่างลิ้นไอดีและไอเสียเปิดเหลื่อมกัน (Over Lap) ดังนั้นจึงควรปรับตั้งไฟจุดระเบิดตามวิธีการมาตรฐานของทางบริษัท
          อนึ่ง คอยล์จุดระเบิดแบบนี้จะมีไดโอดทนแรงเคลื่อนสูง (High Voltage Diode) จึงไม่อาจใช้โอห์มมิเตอร์ธรรมดาตรวจวัดค่าความต้านทานของขดลวดทุติยภูมิ

รูปที่ 11 วงจรควบคุมการจุดระเบิดแบบ DLI (Distributorless Ignition) ของ TCCS (แบบเก่า) 

          สำหรับการควบคุมการจุดระเบิดระบบไร้จานจ่าย ชนิดคอยล์จุดระเบิดร่วมกัน 2 สูบนั้น แบบของ TCCS ระบบเก่า ECU จะส่งสัญญาณ IGDA (Ignition Distribution Signal A) และ IGDB (Ignition Distribution Signal B) ไปยังตัวช่วยจุดระเบิด (Igniter) ให้กับวงจรเลือกกระบอกสูบ (Cylinder Identification Circuit) เพื่อควบคุมการทำงานของทรานซิสเตอร์กำลังของคอยล์จุดระเบิดแต่ละตัว

          2.2 คอยล์จุดระเบิดประจำสูบ (Single–Spark Ignition Coil) 

รูปที่ 12 ระบบจุดระเบิดชนิดคอยล์จุดระเบิดประจำสูบของเครื่องยนต์ 6 สูบ TCCS 

รูปที่ 13 วงจรควบคุมการจุดระเบิด DIS (แบบเก่า) ของโตโยต้า 2JZ–GTE เดือนพฤษภาคม ค.ศ. 1993 

รูปที่ 14 โครงสร้างคอยล์ประจำสูบของบอสช์ 

          ระบบจุดระเบิดแบบนี้ใช้กับเครื่องยนต์ที่มีเทคโนโลยีสูง ให้ประสิทธิภาพการจุดระเบิดดีที่สุด แยกการทำงานอิสระจากกัน แรงเคลื่อนสูงส่งตรงไปยังหัวเทียนที่ปลายขั้วไฟแรงสูงของคอยล์จุดระเบิด จึงไม่เกิดการสูญเสียแรงเคลื่อนเหมือนชนิดอื่นที่ใช้สายหัวเทียน ดังนั้นคอยล์จุดระเบิดของแบบนี้จึงมีขนาดเล็กกะทัดรัด ระบบจุดระเบิดชนิดนี้ TCCS เรียกว่า DIS (Direct Ignition System) หรือระบบจุดระเบิดแบบตรง
          อนึ่ง สำหรับคอยล์จุดระเบิดชนิดนี้ต้องใช้ไดโอดทนการเหนี่ยวนำแรงเคลื่อนสูง (High Tension Diode) ด้วย จากในรูป 14 เป็นวงจรระบบเก่าของ TCCS ใช้ตัวช่วยจุดระเบิด (Igniter) รับสัญญาณ IGT เพื่อควบคุมคอยล์จุดระเบิดแต่ละสูบ
          เครื่องยนต์บางรุ่น เช่นโตโยต้า 1ZZ–FE, 2ZZ–GE, 1NZ-FE และ 1AZ–FE ได้ใช้คอยล์จุดระเบิดร่วมกันกับตัวช่วยจุดระเบิด (Ignition Coil with Igniter) โดยที่ภายในตัวช่วยจุดระเบิด (Igniter) จะมีทรานซิสเตอร์กำลังและไอซี (IC) กำเนิดสัญญาณ IGF แต่วงจรควบคุมมุมดเวลล์จะอยู่ภายใน ECU
          อนึ่ง ระบบจุดระเบิดชนิดคอยล์จุดระเบิดประจำสูบนี้เครื่องยนต์ของซ้าบ (SAAB) และนิสสันใช้มานานแล้ว โดยจะไม่เรียกว่าตัวช่วยจุดระเบิด แต่จะเรียกว่าหน่วยกำลัง (Power Unit) เพราะภายในมีชุดทรานซิสเตอร์กำลังประกอบอยู่ในหน่วยเดียวกันเท่ากับจำนวนสูบ (วงจรภายในไม่เหมือนกับของโตโยต้า) แต่บางรุ่น เช่นเครื่องยนต์นิสสัน VQ25DE, VQ30DE จะใช้ทรานซิสเตอร์กำลังอยู่ที่คอยล์จุดระเบิดของแต่ละสูบ
           ระบบจ่ายไฟจุดระเบิดแรงเคลื่อนสูง (High–Tension Ignition Distribution System) หรือ RHZ ชนิดคอยล์จุดระเบิดประจำสูบของบีเอ็มดับเบิลยจะเรียกย่อว่า RZV (Direct Solid–State Ignition Distribution System) หรือระบบจ่ายไฟจุดระเบิดโดยตรงด้วยอิเล็กทรอนิกส์ ซึ่งเริ่มใช้กับบีเอ็มดับเบิลยู ตั้งแต่รุ่นที่ใช้หน่วยควบคุม (Control Unit) ของบอสช์ DME 3.1 (M43) รวมไปถึงในรุ่นที่ใช้หน่วยควบคุมของซีเมนส์ (SIEMENS) DME 3.3.1 (MS 40.1) สำหรับระบบ RZV ในแบบที่ใช้ของซีเมนส์และแบบใหม่ของบอสช์นั้น จะมีทรานซิสเตอร์กำลังอยู่ในชุดเดียวกันกับคอยล์จุดระเบิดและมีไดโอดทนแรงเคลื่อนสูงอยู่ด้วยเช่นกัน คล้ายกับที่แสดงในรูป 14
           อนึ่ง เครื่องยนต์ฮอนด้าซิตี้รุ่นใช้คอยล์จุดระเบิด 2 ลูกต่อ 1 สูบ โดยเรียกระบบนี้ว่า i-DSI (Intelligent-Dual & Sequential Ignition) หมายถึงการจุดระเบิดเรียงลำดับ 2 ชุด อัจฉริยะ

          ลำดับการจุดระเบิด (Firing Order) ที่ควรรู้สำหรับเครื่องยนต์แถวเรียงและรูปตัววี รวมทั้งเพิ่มเติมสำหรับเครื่องยนต์ที่ใช้คอยล์จุดระเบิดร่วมกัน 2 สูบ ดังแสดงในตารางที่ 1

ตารางที่ 1 ลำดับการจุดระเบิด 
ชนิด
เครื่องยนต์
การเรียงสูบ

ลำดับ

การจุดระเบิด

กระบอกสูบที่ใช้คอยล์จุดระเบิดร่วมกัน
4 สูบแถวเรียง
(ทั่วไป)
หน้าเครื่อง 1  2  3  4
1, 3, 4, 2
1-4 และ 2-3
4 สูบนอนตรงข้าม
(ซูบารุ)
               1    3
หน้าเครื่อง
                  2     4
1, 3, 2, 4
1-2 และ 3-4
6 สูบแถวเรียง
(ทั่วไป)
หน้าเครื่อง  1  2  3  4  5  6
1, 5, 3, 6, 2, 4
1-6, 2-5 และ 3-4
6 สูบวางรูปตัว V
(จีเอ็ม, โฮลเด้น
และอีซูซุ)
                  2   4   6
หน้าเครื่อง
               1   3   5
1, 2, 3, 4, 5, 6
1-4, 2-5 และ 3-6
6 สูบวางรูปตัว V
(โตโยต้า
และมิตซูบิชิ)
               1   3   5
หน้าเครื่อง
                  2   4   6
1, 2, 3, 4, 5, 6
1-4, 2-5 และ 3-6





donate your car today | donate your vehicle | donating a car for taxes | donating car in california | donating my car tax deduction | donating used cars to charity | donation for cars | how donate car | how to donate a car | how to donate a car in california | how to donate my car | how to donate your car | i want to donate my car | junk car donation | places to donate cars | sacramento car donation | tax break for donating a car | tax deduction car donation | tax deduction for car donation | vehicle donate | vehicle donation | where can i donate my car | where to donate a car | where to donate car | where to donate my car

หมวดหมู่ยานยนต์

 
Support : A | B | C
Copyright © 2016. เทคโนโลยียานยนต์ - All Rights Reserved